Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
fib(0) → 0
fib(s(0)) → s(0)
fib(s(s(0))) → s(0)
fib(s(s(x))) → sp(g(x))
g(0) → pair(s(0), 0)
g(s(0)) → pair(s(0), s(0))
g(s(x)) → np(g(x))
sp(pair(x, y)) → +(x, y)
np(pair(x, y)) → pair(+(x, y), x)
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
fib(0) → 0
fib(s(0)) → s(0)
fib(s(s(0))) → s(0)
fib(s(s(x))) → sp(g(x))
g(0) → pair(s(0), 0)
g(s(0)) → pair(s(0), s(0))
g(s(x)) → np(g(x))
sp(pair(x, y)) → +(x, y)
np(pair(x, y)) → pair(+(x, y), x)
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
Q is empty.
We use [23] with the following order to prove termination.
Lexicographic path order with status [19].
Quasi-Precedence:
[fib1, g1] > [sp1, np1, +2] > [0, pair2] > s1
Status: np1: [1]
sp1: [1]
+2: [1,2]
s1: [1]
0: multiset
fib1: [1]
g1: [1]
pair2: [2,1]